9 research outputs found

    Determining the optimal piecewise constant approximation for the nonhomogeneous Poisson process rate of Emergency Department patient arrivals

    Get PDF
    Modeling the arrival process to an Emergency Department (ED) is the first step of all studies dealing with the patient flow within the ED. Many of them focus on the increasing phenomenon of ED overcrowding, which is afflicting hospitals all over the world. Since Discrete Event Simulation models are often adopted to assess solutions for reducing the impact of this problem, proper nonstationary processes are taken into account to reproduce time–dependent arrivals. Accordingly, an accurate estimation of the unknown arrival rate is required to guarantee the reliability of results. In this work, an integer nonlinear black–box optimization problem is solved to determine the best piecewise constant approximation of the time-varying arrival rate function, by finding the optimal partition of the 24 h into a suitable number of not equally spaced intervals. The black-box constraints of the optimization problem make the feasible solutions satisfy proper statistical hypotheses; these ensure the validity of the nonhomogeneous Poisson assumption about the arrival process, commonly adopted in the literature, and prevent mixing overdispersed data for model estimation. The cost function of the optimization problem includes a fit error term for the solution accuracy and a penalty term to select an adequate degree of regularity of the optimal solution. To show the effectiveness of this methodology, real data from one of the largest Italian hospital EDs are used

    A simulation-based optimization approach for the calibration of a discrete event simulation model of an emergency department

    No full text
    Accurate modeling of the patient flow within an Emergency Department (ED) is required by all studies dealing with the increasing and well-known problem of overcrowding. Since Discrete Event Simulation (DES) models are often adopted with the aim of assessing solutions for reducing the impact of this worldwide phenomenon, an accurate estimation of the service time of the ED processes is necessary to guarantee the reliability of the results. However, simulation models concerning EDs are frequently affected by missing data, thus requiring a proper estimation of some unknown parameters. In this paper, a simulation-based optimization approach is used to estimate the incomplete data in the patient flow within an ED by adopting a model calibration procedure. The objective function of the resulting minimization problem represents the deviation between simulation output and real data, while the constraints ensure that the response of the simulation is sufficiently accurate according to the precision required. Data from a real case study related to a big ED in Italy is used to test the effectiveness of the proposed approach. The experimental results show that the model calibration allows recovering the missing parameters, thus leading to an accurate DES model

    A simulation-based optimization approach for the calibration of a discrete event simulation model of an emergency department

    No full text
    Accurate modeling of the patient flow within an Emergency Department (ED) is required by all studies dealing with the increasing and well-known problem of overcrowding. Since Discrete Event Simulation (DES) models are often adopted with the aim of assessing solutions for reducing the impact of this worldwide phenomenon, an accurate estimation of the service time of the ED processes is necessary to guarantee the reliability of the results. However, simulation models concerning EDs are frequently affected by data quality problems, thus requiring a proper estimation of the missing parameters. In this paper, a simulation-based optimization approach is used to estimate the incomplete data in the patient flow within an ED by adopting a model calibration procedure. The objective function of the resulting minimization problem represents the deviation between simulation output and real data, while the constraints ensure that the response of the simulation is sufficiently accurate according to the precision required. Data from a real case study related to a big ED in Italy is used to test the effectiveness of the proposed approach. The experimental results show that the model calibration allows recovering the missing parameters, thus leading to an accurate DES model
    corecore